Mecatronica

Curs
9/10 (3 voturi)
Domeniu: Automatică
Conține 10 fișiere: pdf
Pagini : 76 în total
Cuvinte : 32000
Mărime: 2.89MB (arhivat)
Cost: Gratis
Profesor îndrumător / Prezentat Profesorului: Popescu Dorin
Un curs de baza despre principalele componente si aplicatii ale sistemelor mecatronice

Extras din document

Introducere in Mecatronica

Contextul in care a aparut Mecatronica:

• Mutatii considerabile calitative si cantitative in evolutia societatii in ultimele decenii

• Aparitia unor noi domenii

• Generalizarea automatizarii proceselor de productie

• Integrarea robotilor autonomi cu capacitati senzoriale sporite

• Dezvoltarea inteligentei artificiale

Mecatronica ?

• Stiinta aparte

• Interferenta a 4 domenii traditionale: Mecanica, Electronica, Automatica si Calculatoare

Mecatronica are un impact major in:

• Industria auto

• Industria produselor de larg consum

• Industria constructoare de masini

• Robotica

• Biomedicina

• Sisteme de control

Topica domeniului mecatronica include:

• Elemente si transmisii mecanice

• Senzori si traductoare

• Sisteme de actionare

• Sisteme de conducere

• Interfete om-masina

• Programare

Mecatronica este perceputa ca un domeniu tehnic interdisciplinar in care se folosesc metode din ingineria mecanica,

ingineria electrica si din stiinta calculatoarelor pentru a proiecta, produce si utiliza produse cu pret scazut sau/si raport

pret/performante scazut.

Exista mai multe definitii pentru Mecatronica

• Mecatronica = combinatie sinergetica de discipline care concura la proiectarea produselor si proceselor.

• Sistemele mecatronice = sisteme mecanice inzestrate cu sisteme senzoriale, sisteme de actionare, sisteme

programabile de conducere si sisteme de comunicatie.

Dezvoltarea Mecatronicii – datorita cresterii vertiginoase a utilizarii microelectronicii in dezvoltarea produselor si

proceselor moderne

Toti autorii recunosc:

– caracterul unificator interdisciplinar al Mecatronicii

– produsele mecatronice presupun miscare, in sensul deplasarii spatiale

MECANICA ELECTRONICA

AUTOMATICA CALCULATOARE

MECATRONICA

• Mecatronica presupune aplicarea celor mai moderne tehnici din ingineria mecanica de precizie, din electronica,

din automatica, din stiinta calculatoarelor si din inteligenta artificiala pentru a proiecta procese si produse

performante.

• Mecatronica presupune un echilibru intre nivelul teoretic al abordarii si nivelul practic al implementarii.

Sistemele de control ale sistemelor mecatronice sunt dependente de abilitatea de a:

• masura,

• reprezenta (codifica),

• comunica,

• interpreta (decodifica) si

• furniza (de exemplu afisa)

date referitoare la dinamica variabilelor care sunt implicate in proces.

Senzorii sistemelor mecatronice:

– Senzori care masoara interactiunea sistemelor mecatronice cu mediul lor de operare

– Senzori care masoara variabile interne sistemelor mecatronice

Subsistemul mecanic este partea sistemului mecatronic care asigura miscarea si la care se ataseaza senzori.

Senzorii convertesc informatia specifica in semnale electrice.

Subsistemul electronic converteste aceste semnale in format numeric pentru ca acestea sa poata fi folosite de

subsistemul de conducere.

Domeniul Mecatronicii presupune aplicarea sinergetica a ingineriei mecanice, electronice, automaticii si

calculatoarelor in dezvoltarea sistemelor si produselor electromecanice printr-o abordare a proiectarii integrata.

Un sistem mecatronic cere o abordare multidisciplinara pentru proiectarea, dezvoltarea si implementarea sa.

In dezvoltarea traditionala a unui sistem electromecanic, componentele mecanice si cele electrice sunt proiectate

sau selectate separat si apoi integrate, posibil cu alte componente, hardware si software.

In contrast, in abordarea mecatronista, intregul sistem electromecanic este tratat concurential, intr-o maniera

integrata, de catre o echipa multidisciplinara de ingineri.

• In mod natural, un sistem format prin interconectarea unui set de componente proiectate si realizate

independent, nu va produce acel nivel de performanta ca un sistem mecatronic, care implica o abordare integrata

asupra proiectarii, dezvoltarii si implementarii.

• Cea mai buna potrivire si compatibilitate intre functiunile componentelor poate fi realizata printr-o abordare

unificata si integrata asupra proiectarii si dezvoltarii, si de asemenea cea mai buna functionare este posibila

printr-o implementare integrata.

In general, un produs mecatronic va fi mai eficient, obtinut cu costuri mai mici, fiabil, flexibil si functional, si din

punct de vedere mecanic mai putin complex, comparativ cu un produs nemecatronic pentru care a fost nevoie de eforturi

similare in realizarea sa.

• Performantele unui sistem nemecatronic pot fi imbunatatite printr-un control sofisticat, care este realizat cu

costuri aditionale pentru senzori, instrumentatie, hardware si software de control.

• Produsele si sistemele mecatronice moderne includ automobilele si avioanele, dispozitivele electrocasnice

inteligente, robotii medicali, vehiculele spatiale.

SISTEME MECATRONICE

• Un sistem mecatronic tipic contine un “schelet” mecanic, senzori, actuatori, controlere, dispozitive de prelucrare

semnale, hardware digital/calculator, software, dispozitive de interfatare si surse de putere.

• De exemplu, un servomotor, care este un motor cu capacitatea de feedback senzorial pentru generarea cu

acuratete a miscarilor complexe este constituit din componente mecanice, electrice si electronice.

• Componentele mecanice principale sunt rotorul si statorul.

• Componentele electrice includ infasurarile de camp si infasurarile rotorice (daca sunt prezente), circuitul pentru

transmisia de putere si comutatie (daca este necesar).

• Componentele electronice le includ pe cele necesare pentru achizitia si prelucrarea marimilor senzoriale (de

exemplu encoder optic pentru deplasari, si tahometru pentru viteza).

• Proiectarea generala a unui servomotor poate fi imbunatatita printr-o abordare mecatronista.

• Robotul humanoid ASIMO (Honda) este un sistem mecatronic mai complex si “inteligent”.

• El presupune mai multe servomotoare si o varietate de componente mecatronice.

• O abordare mecatronista poate fi mult mai benefica pentru proiectarea si dezvoltarea unui sistem electromecanic

complex.

• Proiectarea unui sistem mecatronic presupune proiectarea si integrarea simultana a tuturor componentelor.

• O astfel de proiectare “concurenta” si integrata are nevoie de o abordare noua a insusi procesului de proiectare

si, de asemenea, o considerare formala a transferului de informatie si energie intre componentele sistemului.

Preview document

Mecatronica - Pagina 1
Mecatronica - Pagina 2
Mecatronica - Pagina 3
Mecatronica - Pagina 4
Mecatronica - Pagina 5
Mecatronica - Pagina 6
Mecatronica - Pagina 7
Mecatronica - Pagina 8
Mecatronica - Pagina 9
Mecatronica - Pagina 10
Mecatronica - Pagina 11
Mecatronica - Pagina 12
Mecatronica - Pagina 13
Mecatronica - Pagina 14
Mecatronica - Pagina 15
Mecatronica - Pagina 16
Mecatronica - Pagina 17
Mecatronica - Pagina 18
Mecatronica - Pagina 19
Mecatronica - Pagina 20
Mecatronica - Pagina 21
Mecatronica - Pagina 22
Mecatronica - Pagina 23
Mecatronica - Pagina 24
Mecatronica - Pagina 25
Mecatronica - Pagina 26
Mecatronica - Pagina 27
Mecatronica - Pagina 28
Mecatronica - Pagina 29
Mecatronica - Pagina 30
Mecatronica - Pagina 31
Mecatronica - Pagina 32
Mecatronica - Pagina 33
Mecatronica - Pagina 34
Mecatronica - Pagina 35
Mecatronica - Pagina 36
Mecatronica - Pagina 37
Mecatronica - Pagina 38
Mecatronica - Pagina 39
Mecatronica - Pagina 40
Mecatronica - Pagina 41
Mecatronica - Pagina 42
Mecatronica - Pagina 43
Mecatronica - Pagina 44
Mecatronica - Pagina 45
Mecatronica - Pagina 46
Mecatronica - Pagina 47
Mecatronica - Pagina 48
Mecatronica - Pagina 49
Mecatronica - Pagina 50
Mecatronica - Pagina 51
Mecatronica - Pagina 52
Mecatronica - Pagina 53
Mecatronica - Pagina 54
Mecatronica - Pagina 55
Mecatronica - Pagina 56
Mecatronica - Pagina 57
Mecatronica - Pagina 58
Mecatronica - Pagina 59
Mecatronica - Pagina 60
Mecatronica - Pagina 61
Mecatronica - Pagina 62
Mecatronica - Pagina 63
Mecatronica - Pagina 64
Mecatronica - Pagina 65
Mecatronica - Pagina 66
Mecatronica - Pagina 67
Mecatronica - Pagina 68
Mecatronica - Pagina 69
Mecatronica - Pagina 70
Mecatronica - Pagina 71
Mecatronica - Pagina 72
Mecatronica - Pagina 73
Mecatronica - Pagina 74
Mecatronica - Pagina 75
Mecatronica - Pagina 76
Mecatronica - Pagina 77

Conținut arhivă zip

  • m1.pdf
  • m2.pdf
  • m3.pdf
  • m4.pdf
  • m5.pdf
  • m6.pdf
  • m6-1.pdf
  • m7.pdf
  • m8.pdf
  • m9.pdf

Alții au mai descărcat și

Automatizări Industriale în Mecatronică

Definirea sistemului flexibil de prelucrare Sistemul flexibil de prelucrare SFP poate fi definit ca un ansamblu integrat de maşini-unelte...

Elemente Constructive Mecatronice Aferente Arborelui Intermediar al unui Minireductor de Turatie

A. Enuntarea temei de lucru Sa se proiecteze si sa se prezinte principalele elemente constructive mecatronice aferente arborelui intermediar al...

Sistemul Airbag

Introducere Airbagul este una dintre invenţiile marcante ale secolului trecut, care se afla intr-o continua dezvoltare inclusiv in zilele noastre....

Fiabilitatea Software

Succesul misiunilor NASA depinde in primul rand de sistemele in care software-ul are o importanta vitala. Acestea trebuie sa functioneze pentru un...

Sisteme de Intrare-Iesire

Caracteristicile echipamentelor periferice Caracteristici funcţionale si constructive II) Caracteristici externe a) caracteristici de interfaţă...

Electronica Aplicata

Codul de bare este un cod binar aranjat ca un câmp de bare şi goluri, într-o configuraţie paralelă, după un model prestabilit. Acest cod reprezintă...

Programare Orientata Obiect

În C++ se folosesc funcţii membre numite constructori şi destructori pentru crearea, iniţializarea, copierea şi distrugerea obiectelor. Un...

Programare Web

Funcţii PHP O funcţie reprezintă un grup de instrucţiuni care realizează o anumită operaţie (îndeplineşte o sarcină) şi care poate fi repetată....

Ai nevoie de altceva?