Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale

Proiect
9/10 (1 vot)
Conține 1 fișier: doc
Pagini : 55 în total
Cuvinte : 10826
Mărime: 2.78MB (arhivat)
Cost: 8 puncte
Profesor îndrumător / Prezentat Profesorului: Rodica Diaconescu
UNIVERSITATEA TEHNICA ,,GH. ASACHI’’ FACULTATEA DE INGINERIE CHIMICA SI PROTECTIA MEDIULUI

Cuprins

CAP. I. Stadiul actual al cunoasterii in domeniul utilizarii retelelor neuronale artificiale in ingineria chimica ( cataliza ecologica).

I.1. Contextul aparitiei si dezvoltarii cercetarilor in domeniul retelelor neuronale artificiale

I.2. Concepte fundamentale

I.2.1. Notiuni de neurobiologie

I.2.2. Caracteristici ale retelelor neuronale artificiale

I.2.3. Tipuri de retelelor neuronale artificiale

I.2.4. Arhitectura retelei neuronale

I.2.5. Algoritmi de antrenare

I.3. Aplicatii ale retelelor neuronale artificiale

I.3.1. Aplicatii ale retelelor neuronale artificiale in diverse domenii

I.3.2. Aplicatii ale retelelor neuronale artificiale in chimie si inginerie chimica

I.3.3. Aplicatii ale retelelor neuronale artificiale in sisteme catalitice

I.3.3.1.Aspecte generale

I.3.3.2.Modele compozitionale catalitice

I.3.3.3.Modelarea cinetica cu ajutorul retelelor neuronale artificiale

I.3.3.4.Designul reactoarelor cu retele neuronale artificiale

I.3.4. Aplicatii ale retelelor neuronale artificiale in ecologie

I.3.4.1. Retele neuronale artificiale pentru predictia starii unui proces de fermentatie

I.3.4.2. Sortarea deseurilor

I.3.4.3. Utilizarea retelelor neuronale artificiale pentru modelarea proceselor neliniare cu aplicatie la reactoare de tratare a reziduurilor

I.3.4.4. Utilizarea retelelor neuronale artificiale in planificarea si conducerea proceselor secventiale

I.4. Implementarea software a retelelor neuronale artificiale

I.4.1. Caracteristici generale

I.4.2.NeuroSolutions for Excel – proprietatile produsului

CAP. II. Studiul hidroxizilor dubli lamelari cu ajutorul retelelor neuronale artificiale

II.1. Aspecte generale privind clasa de materiale studiate

II.2 Sinteza probelor de hidroxizi dubli lamelari

II.3. Modelare neuronala si optimizare

Extras din document

CAPITOLUL I.

Stadiul actual al cunoasterii in domeniul utilizarii retelelor neuronale artificiale in inginerie chimica ( cataliza ecologica )

I. 1.Contextul aparitiei si dezvoltarii cercetarilor in domeniul retelelor neuronale artificiale

Identificarea bazata pe modele neuronale s-a conturat ca directie de cercetare la începutul anilor 1990, drept urmare a investigatiilor matematice asupra proprietatilor de aproximare ale retelelor neuronale de tip MLP (Multilayer Perceptron) si de tip RBF (Radial-Basis Function) .Evolutia noului domeniu a fost impulsionata de contributiile remarcabile, din aceeasi perioada ale unor nume de prestigiu in automatica, care au deschis drumul utilizarii retelelor MLP în identificarea neliniara si care s-au orientat pe arhitecturi de tip RBF. In acest context, merita subliniat faptul ca aplicarea in automatica a tehnicilor specifice retelelor neuronale a fost dominata, pe intreaga durata a anilor ‘90, de exploatarea topologiilor MLP cu noduri sigmoidale in stratul (straturile) ascuns(e). Totusi, un numar de cercetatori au continuat studierea aplicabilitatii retelelor de tip RBF in identificarea si conducerea sistemelor.Pe de alta parte, firmele producatoare de software tehnico-stiintific au demarat dezvoltarea de facilitati specifice retelelor neuronale, astfel incat, aparitia în 1992 a primei versiuni a Neuronal Network Toolbox (NNT) incorporata in mediul MATLAB 4.2 a avut un impact major asupra interesului acordat de catre automatisti acestei directii de cercetare. Intrucat NNT, de la prima versiune pâna la cea mai recenta, a fost conceput sa acopere o arie cat mai larga de aplicatii ale retelelor neuronale, proiectantii sai nu si-au propus dezvoltarea concomitenta a unor blocuri Simulink, dedicate constructiei modelelor dinamice. O initiativa valoroasa in aceasta directie trebuie semnalata in studiile practice din monografie, care prezinta realizarea unui bloc Simulink destinat antrenarii on-line, prin metoda propagarii inverse, a unei configuratii dinamice, bazata; pe topologie MLP, destinata identificarii neliniare.

S-a inceput apoi dezvoltarea retelelor neuronale in Simulink, versiunea 4.0.1 în scopul construirii modelelor dinamice, permitand utilizarea topologiilor ADALINE, MLP si RBF, selectarea a diverse strategii de organizare a datelor pentru identificare, precum si utilizarea mai multor tehnici de antrenare în conformitate cu topologia retelei. Prin crearea unor asemenea instrumente, se realizeaza un progres notabil in ceea ce priveste simplitatea manevrarii modelelor neuronale in experimente de identificare, care, astfel, pot fi conduse direct in mediul Simulink (considerand inclusiv situatia aplicatiilor de timp real, pentru care se poate face apel la serviciile Real-Time Workshop). Merita; de amintit faptul ca preocuparile in directia dezvoltarii de facilitati Matlab-Simulink pentru utilizarea retelelor neuronale in automatica; au avut in vedere, in mod constant, si aspectul educational. Validitatea acestor preocupari a primit, indirect, o confirmare importanta chiar din partea firmei producatoare, The MathWorks, care, incepand cu versiunea Simulink comercializata In 2001, a inclus un bloc pentru identificare neuronala bazata pe arhitectura MLP. Implementarea furnizata de firma The MathWorks nu contine blocuri structurate pe topologiile ADALINE si RBF si nici nu permite utilizarea strategiilor de antrenare on-line (pe esantioane). Primul neuron artificial a fost ‚construit in anul 1943 de catre neurofiziologul Warren McCulloch şi logicianul Walter Pitts. Sintetic vorbind, retelele neuronale (NN) reprezinta sisteme neprogramate (nealgoritmice) de procesare adaptiva a informatiei. NN invata din exemple si se comporta ca niste cutii negre modul de procesare a informaţiei fiind neexplicit.

Astfel, instrumentele realizate permit accesul la toate arhitecturile standard de retele neuronale vizate in identificare (ADALINE, MLP s;i RBF), oferind variante de antrenare de tip off- si on-line, prin diversi algoritmi, in conformitate cu specificul topologiei selectate.

Preview document

Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 1
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 2
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 3
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 4
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 5
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 6
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 7
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 8
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 9
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 10
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 11
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 12
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 13
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 14
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 15
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 16
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 17
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 18
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 19
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 20
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 21
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 22
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 23
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 24
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 25
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 26
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 27
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 28
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 29
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 30
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 31
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 32
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 33
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 34
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 35
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 36
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 37
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 38
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 39
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 40
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 41
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 42
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 43
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 44
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 45
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 46
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 47
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 48
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 49
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 50
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 51
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 52
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 53
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 54
Studiul catalizatorilor din clasa hidroxizilor dubli lamelari cu ajutorul rețelelor neuronale artificiale - Pagina 55

Conținut arhivă zip

  • Studiul Catalizatorilor din Clasa Hidroxizilor Dubli Lamelari cu Ajutorul Retelelor Neuronale Artificiale.doc

Alții au mai descărcat și

Baze de Date Multimedia

Baze de date multimedia Definirea conceptelor. Aplicatii. Data base - baza de date - este un grup de fisiere în care este înregistrata o multime...

Aplicații Client Server

Aplicatii client server Studiu de caz- Solutie de gestiune a Resurselor Umane si Salarizarii Solutiile de gestiune economica Mobius, sunt...

Evenimente Naturale care se Autoconsolideaza prin Circuite de Feedback

“Feedback-ul este ceea ce lipsea din stiinta, in afara lui Newton”, spunea omul de stiinta britanic Steve Grand. “Noi credeam ca este un fenomen...

Sisteme bazate pe cunoștințe în conducerea proceselor

Programul realizeaza determinarea procesului de incalzire ,respectiv racire intr-o camera si a timpului (maxim respectiv minim) in functie de trei...

Documentul de specificație a cerințelor - Instant Messenger

1. Introducere: 1.1. Scurta descriere a produsului: Produsul va reprezenta un canal de comunicatie care va permite utilizatorilor sa...

Obiective și Aplicații ale Nanotehnologiei

I. INTRODUCERE Dezvoltarea ştiinţei a demonstrat că cele mai spectaculoase progrese se obţin prin cercetare pluridisciplinară, situată la graniţa...

Aparatură hidraulică

Scheme Hidraulice Prima schema Hidraulica este in figura 1: Figura 1 A doua schema hidraulica este in figura 2 : Figura 2 A treia schema...

Ai nevoie de altceva?