Surse de Energie

Referat
5.7/10 (4 voturi)
Domeniu: Electrotehnică
Conține 1 fișier: doc
Pagini : 0 în total
Cuvinte : 4674
Mărime: 413.54KB (arhivat)
Publicat de: Alistar Ardelean
Puncte necesare: 0
Profesor îndrumător / Prezentat Profesorului: Alexandru Morega
Facultatea de inginerie electrica master an 1 Sisteme electrice inteligente Nota : 9 referat in lb engleza

Extras din referat

Applications and implementations

Solar cells are often electrically connected and encapsulated as a module, termed a photovoltaic array or solar panel. Solar panels often have a sheet of glass on the front (sun up) side with a resin barrier behind, allowing light to pass while protecting the semiconductor wafers from the elements (rain, hail, etc). Solar cells are also usually connected in series in modules, creating an additive voltage.

Theory

Simple explanation

1. Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.

2. Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity. The complementary positive charges that are also created (like bubbles) are called holes and flow in the direction opposite of the electrons in a silicon solar panel.

3. An array of solar panels converts solar energy into a usable amount of direct current (DC) electricity.

Optionally:

1. The DC current enters an inverter.

2. The inverter turns DC electricity into 120 or 230-volt AC (alternating current) electricity needed for home appliances.

3. The AC power enters the utility panel in the house.

4. The electricity is then distributed to appliances or lights in the house.

Photogeneration of charge carriers

When a photon hits a piece of silicon, one of three things can happen:

1. the photon can pass straight through the silicon - this (generally) happens for lower energy photons,

2. the photon can reflect off the surface,

3. the photon can be absorbed by the silicon which either:

• Generates heat, OR

• Generates electron-hole pairs, if the photon energy is higher than the silicon band gap value.

Note that if a photon has an integer multiple of band gap energy, it can create more than one electron-hole pair. However, this effect is usually not significant in solar cells. The "integer multiple" part is a result of quantum mechanics and the quantization of energy.

When a photon is absorbed, its energy is given to an electron in the crystal lattice. Usually this electron is in the valence band, and is tightly bound in covalent bonds between neighboring atoms, and hence unable to move far. The energy given to it by the photon "excites" it into the conduction band, where it is free to move around within the semiconductor. The covalent bond that the electron was previously a part of now has one less electron - this is known as a hole. The presence of a missing covalent bond allows the bonded electrons of neighboring atoms to move into the "hole," leaving another hole behind, and in this way a hole can move through the lattice. Thus, it can be said that photons absorbed in the semiconductor create mobile electron-hole pairs.

A photon need only have greater energy than that of the band gap in order to excite an electron from the valence band into the conduction band. However, the solar frequency spectrum approximates a black body spectrum at ~6000 K, and as such, much of the solar radiation reaching the Earth is composed of photons with energies greater than the band gap of silicon. These higher energy photons will be absorbed by the solar cell, but the difference in energy between these photons and the silicon band gap is converted into heat (via lattice vibrations - called phonons) rather than into usable electrical energy.

Charge carrier separation

There are two main modes for charge carrier separation in a solar cell:

1. drift of carriers, driven by an electrostatic field established across the device

2. diffusion of carriers from zones of high carrier concentration to zones of low carrier concentration (following a gradient of electrochemical potential).

In the widely used p-n junction designed solar cells, the dominant mode of charge carrier separation is by drift. However, in non-p-n junction designed solar cells (typical of the third generation of solar cell research such as dye and polymer thin-film solar cells), a general electrostatic field has been confirmed to be absent, and the dominant mode of separation is via charge carrier diffusion.

The p-n junction

The most commonly known solar cell is configured as a large-area p-n junction made from silicon. As a simplification, one can imagine bringing a layer of n-type silicon into direct contact with a layer of p-type silicon. In practice, p-n junctions of silicon solar cells are not made in this way, but rather, by diffusing an n-type dopant into one side of a p-type wafer (or vice versa).

If a piece of p-type silicon is placed in intimate contact with a piece of n-type silicon, then a diffusion of electrons occurs from the region of high electron concentration (the n-type side of the junction) into the region of low electron concentration (p-type side of the junction). When the electrons diffuse across the p-n junction, they recombine with holes on the p-type side. The diffusion of carriers does not happen indefinitely however, because of an electric field which is created by the imbalance of charge immediately either side of the junction which this diffusion creates. The electric field established across the p-n junction creates a diode that promotes current to flow in only one direction across the junction. Electrons may pass from the n-type side into the p-type side, and holes may pass from the p-type side to the n-type side. This region where electrons have diffused across the junction is called the depletion region because it no longer contains any mobile charge carriers. It is also known as the "space charge region".

Preview document

Surse de Energie - Pagina 1
Surse de Energie - Pagina 2
Surse de Energie - Pagina 3
Surse de Energie - Pagina 4
Surse de Energie - Pagina 5
Surse de Energie - Pagina 6
Surse de Energie - Pagina 7
Surse de Energie - Pagina 8
Surse de Energie - Pagina 9
Surse de Energie - Pagina 10
Surse de Energie - Pagina 11
Surse de Energie - Pagina 12
Surse de Energie - Pagina 13

Conținut arhivă zip

  • Surse de Energie.doc

Alții au mai descărcat și

Acționări electrice

Actionarea electrica de curent continuu cu grup motor–generator 1.Programul lucrarii: 1) Pe baza schemei de montaj se identifica elementele...

Măsurări electrice - L1 - metode de măsurare directe și indirecte

Pentru masurarea rezistentelor mici (* 40*) se poate utiliza schema paralel (D*.) a multimetrului. Pentru aceasta se scurtcircuiteaza bornele...

Măsurări electrice - L2 - metode de punte în curent continuu și în curent alternativ

1. Chestiuni de studiat 1.1. Masurarea rezistentei electrice cu puntea simpla (Wheatstone). 1.1.1. Determinarea conditiilor de masurare cu...

Măsurări electrice - L3 - convertoare de măsurare în regim dinamic

1. Chestiuni de studiat. 1.1. Ecuatii de functionare pentru convertoarele de masurare. 1.2. Comportarea convertoarelor în domeniul timp. 1.2.1....

Măsurări electrice L4 - aparate electrice analogice de măsurare

1. Chestiuni de studiat. 1.1. Aparate electrice analogice de masurare. Principii de functionare si simboluri 1.2. Aparate magnetoelectrice....

Măsurări electrice - L6 - verificarea metrologică a mijloacelor de măsurare

1. Chestiuni de studiat 1.1. Verificarea metrologica - principii si metode. 1.2. Metoda comparatiei - verificarea unui voltmetru de c.a. de...

Prelucrarea Semnalelor

Laborator 1 Scopul lucrarii: - generarea unui semnal sinusoidal de tipul s(i)=sin(2*pi/N*i); - adunare a doua semnale sinusoidale având...

Te-ar putea interesa și

Surse Regenerabile de Energie

GENERALITĂŢI În sectorul energetic din majoritatea statelor europene s-au produs transformări majore determinate de necesitatea creşterii...

Îmbunătățirea calității energiei electrice într-un punct comun de cuplare a surselor de energie electrică neconvențională la sistemul de distribuție a energiei electrice

CAPITOLUL 1. INTRODUCERE. ASPECTE GENERALE PRIVIND CALITATEA ENERGIEI ELECTRICE. Tema acestui proiect este actuală și pune în evidență efectele...

Promovarea consumului durabil. Studiu de caz - sectorul energetic

Introducere A fost aleasă această temă cu scopul înțelegerii și conștientizării efectelor negative pe care le are sectorul energetic asupra...

Aspecte de mediu la o instalație de producere a biodieselului

Introducere Degradarea continuă a mediului înconjurător precum şi schimbările climatice survenite în ultimele decenii au conştientizat omenirea...

Producerea Energiei Electrice

ARGUMENT Unica sursă de energie care a alimentat civilizaţia noastră până în acest secol a fost energia solară, înmagazinată sub formă de energie...

Omul și Energia

Introducere Omenirea a avut multe probleme de rezolvat pe parcursul istoriei sale de secole. Dar problema energiei a fost, este şi va fi problema...

Surse alternative sau neconvenționale ale energiei

1.Introducere În ultimul secol, folosirea energiei din combustibili fosili (petrol, gaz, cabuni: prin ardere), a avut efecte dezastruoase asupra...

Energii regenerabile

Scurt istoric al energiei În perioada de început a omenirii singura sursă de energie, pe scară largă, de care omul putea să dispună, în afară de...

Ai nevoie de altceva?